Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(3): e2300615, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472086

RESUMO

Phytosterols usually have to be esterified to various phytosterol esters to avoid their disadvantages of unsatisfactory solubility and low bioavailability. The enzymatic synthesis of phytosterol esters in a solvent-free system has advantages in terms of environmental friendliness, sustainability, and selectivity. However, the limitation of the low stability and recyclability of the lipase in the solvent-free system, which often requires a relatively high temperature to induce the viscosity, also increased the industrial production cost. In this context, a low-cost material, namely diatomite, was employed as the support in the immobilization of Candida rugosa lipase (CRL) due to its multiple modification sites. The Fe3 O4 was also then introduced to this system for quick and simple separation via the magnetic field. Moreover, to further enhance the immobilization efficiency of diatomite, a modification strategy which involved the octadecyl and sulfonyl group for regulating the hydrophobicity and interaction between the support and lipase was successfully developed. The optimization of the ratio of the modifiers suggested that the -SO3 H/C18 (1:1.5) performed best with an enzyme loading and enzyme activity of 84.8 mg·g-1 and 54 U·g-1 , respectively. Compared with free CRL, the thermal and storage stability of CRL@OSMD was significantly improved, which lays the foundation for the catalytic synthesis of phytosterol esters in solvent-free systems. Fortunately, a yield of 95.0% was achieved after optimizing the reaction conditions, and a yield of 70.0% can still be maintained after six cycles.


Assuntos
Terra de Diatomáceas , Enzimas Imobilizadas , Fitosteróis , Enzimas Imobilizadas/metabolismo , Esterificação , Lipase/metabolismo , Biocatálise , Solventes , Fitosteróis/metabolismo , Esteróis , Estabilidade Enzimática , Ésteres
2.
Food Res Int ; 180: 114059, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395552

RESUMO

Ketogenic diet, characterized by high fat and low carbohydrate content, is gradually becoming a new perspective in the human diet; however, the mechanism of digestion of ketogenic diet remains unknown. In this study, we explored the oil-water interface to elucidate the digestion of a ketogenic diet based on typical representative medium- and long-chain triglycerides. The free fatty acids (FFAs) release indicated that glycerol trioctanoate with a shorter carbon chain (FFA = 920.55 ± 10.17 µmol) was significantly more digestible than glycerol tripalmitate (851.36 ± 9.48 µmol) and glycerol tristearate (805.81 ± 10.03 µmol). Particle size analysis revealed that the length of the carbon chain increased the size of triglycerides, resulting in a decreased contact area with lipase. The interfacial phenomenon indicated that the longer the carbon chain of triglycerides, the greater the reduction in binding capacity with salt ions in the digestive solution. Fluorescence spectroscopy analysis showed that the length of the carbon chain induced the displacement of the lipase peak, suggesting that the carbon chain length could alter the structure of lipase. Molecular dynamics simulation showed that the longer the carbon chain of triglycerides, the easier it was to loosen the structure of lipase. Bond energy analysis showed that the carbon chain length of triglycerides was positively correlated with the bond energy strength of the ester bonding. In conclusion, this study emphasizes that the ketogenic diet should primarily consist of shorter carbon chain triglycerides because carbon chain length can alter the digestion of triglycerides. This provides a new perspective on the quest for more effective ketogenic diet, in line with the current view of healthy diet.


Assuntos
Dieta Cetogênica , Humanos , Glicerol , Triglicerídeos/química , Lipase/metabolismo , Digestão , Carbono
3.
J Sci Food Agric ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37994149

RESUMO

BACKGROUND: The relative low stability, reusability and activity of enzymes made the industrial production of vitamin E succinate (VES) can only be performed with complex processes and high cost using chemical methods. To address these issues, in the present study, an ionic liquids (ILs) modification strategy was developed to improve the activity and stability of lipases in VES synthesis. RESULTS: The results showed that the [1-butyl-3-methyl imidazole] [N-acetyl-l-proline] ILs modified Candida rugosa lipase (CRL) has the highest modification degree (48.28%), activity (774 U g-1 ), thermostability and solvent tolerance in three selected modifiers. Additionally, after reaction condition optimization, the highest yield of VES can be improved to 95.18% at 45 °C for 15 h, which was significantly improved compared to some previous studies. CONCLUSION: In the present study, a high-efficiency VES synthesis strategy was successfully developed via modification of lipase. Moreover, the mechanism by which ILs modification can enhance the activity and stability of lipase was investigated via both experimental and computational-aided methods. Molecular dynamics simulation suggested that ILs modification changed the geometry of Phe344 from flat to upright, which significantly reshaped and enhanced the size of substrate binding pocket of CRL. It is also agreement with our circular dichroism and fluorescence spectroscopy results, which suggested that the modification changed the secondary structure of CRL to a certain extent. The larger pocket also endowed the suitable binding pose of succinate, which made the hydrogen bonds between succinate and active site Ser209 become stronger, and thus improving the yield of VES. © 2023 Society of Chemical Industry.

4.
J Environ Manage ; 346: 118975, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716172

RESUMO

Graphite oxide (GO) is an excellent laccase immobilization material. However, the electrostatic interaction between graphene leads to the accumulation of GO, as well as the interaction with the surface of enzyme molecules causing protein denaturation and deactivation, which limits its further industrial application. In this study, the ionic liquids (ILs) modification strategy was proposed to improve the stability and catalytic performance of immobilized laccase. The laccase-ILs-MGO exhibited remarkable enzymatic properties, with significant enhancements in organic solvent tolerance, thermal and operational stability. The laccase-ILs-MGO system exhibited a remarkable removal efficiency of 95.5% towards 2,4-dichlorophenol (2,4-DCP) within 12 h and maintained over 70.0% removal efficiency after seven reaction cycles. In addition, the efficient elimination of other phenolic compounds and recalcitrant polycyclic aromatic hydrocarbons could also be accomplished. Molecular dynamics simulation and molecular docking studies demonstrated that immobilized laccase exhibited superior structural rigidity and stronger hydrogen bond interactions with substrates compared to free laccase, which was beneficial for the stability of both the laccase and substrate degradation efficiency. Therefore, this study proposed a simple and practical strategy for modifying GO with ILs, providing novel insights into developing efficient enzyme immobilization techniques.


Assuntos
Grafite , Líquidos Iônicos , Líquidos Iônicos/química , Grafite/química , Lacase/química , Lacase/metabolismo , Óxido de Magnésio , Simulação de Acoplamento Molecular , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Óxidos , Fenóis , Fenômenos Magnéticos
5.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570817

RESUMO

As some of the most widely used biocatalysts, lipases have exhibited extreme advantages in many processes, such as esterification, amidation, and transesterification reactions, which causes them to be widely used in food industrial production. However, natural lipases have drawbacks in terms of organic solvent resistance, thermostability, selectivity, etc., which limits some of their applications in the field of foods. In this systematic review, the application of lipases in various food processes was summarized. Moreover, the general structure of lipases is discussed in-depth, and the engineering strategies that can be used in lipase engineering are also summarized. The protocols of some classical methods are compared and discussed, which can provide some information about how to choose methods of lipase engineering. Thermostability engineering and solvent tolerance engineering are highlighted in this review, and the basic principles for improving thermostability and solvent tolerance are summarized. In the future, comput er-aided technology should be more emphasized in the investigation of the mechanisms of reactions catalyzed by lipases and guide the engineering of lipases. The engineering of lipase tunnels to improve the diffusion of substrates is also a promising prospect for further enhanced lipase activity and selectivity.


Assuntos
Indústria Alimentícia , Lipase , Lipase/química , Estabilidade Enzimática , Solventes/química , Computadores
6.
Bioprocess Biosyst Eng ; 46(12): 1695-1709, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555945

RESUMO

Vitamin E (VE) is a natural antioxidant which is widely used in the food fields, while the shortcomings of easy oxidative inactivation and poor water solubility limit its application. Vitamin E esters' (VEEs) derivatives, such as vitamin E acetate (VEA), are more stable and easier to be absorbed while have similar biological activities and physiological functions compared with VE. In this systematic review, the digestion, absorption and physiological function of VEEs were summarized. To promote their further industrial applications, the synthesis strategies of VEEs were also summarized in-depth. In particular, as a new generation of green solvents, ionic liquids (ILs) have been widely used in enzymatic reactions due to the stabilization and activation of enzymes. Their applications in enzymatic synthesis of VEEs were summarized and discussed. Finally, several future perspectives for developing more efficiency strategies of VEEs synthesis, such as enzyme engineering and design of novel ILs, were also discussed.


Assuntos
Ésteres , Líquidos Iônicos , Vitamina E , Solventes , Solubilidade
7.
Bioprocess Biosyst Eng ; 46(11): 1513-1531, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37458833

RESUMO

The bio-enzyme degradation technology is a promising approach to sustainably remove pollution in the water and laccase is one of the most widely used enzymes in this area. Nevertheless, the further industrial application of laccase is limited by low stability, short service, low reusability and high price. The immobilization technology can significantly improve the stability and reusability of enzymes and thus promoting their industrial applications. Nanocomposite materials have been developed and applied in the efficient immobilization of laccase due to their superior physical, chemical, and biological performance. This paper presents a comprehensive review of various nanocomposite immobilization methods for laccase and the consequent changes in enzymatic properties post-immobilization. Additionally, a comprehensive analysis is conducted on the factors that impact laccase immobilization and its water removal efficiency. Furthermore, this review examines the effectiveness of common contaminants' removal mechanisms while summarizing and discussing issues related to laccase immobilization on nanocomposite carriers. This review aims to provide valuable guidance for enhancing laccase immobilization efficiency and enzymatic water pollutant removal.


Assuntos
Poluentes Ambientais , Nanocompostos , Poluentes Químicos da Água , Águas Residuárias , Lacase/química , Enzimas Imobilizadas/química , Água , Poluentes Químicos da Água/metabolismo
8.
Int J Biol Macromol ; 248: 125894, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37479200

RESUMO

Ionic liquids (ILs) have been widely used as chemical modifiers to modify the carriers and thus improve the efficiency, activity and stability of the enzymes. However, as thousands of ILs have been found up to date, it's a huge work for screening and designing suitable ILs for immobilization of enzymes. Moreover, the mechanism of improving enzymes catalytic performance is still remain ambiguous. Thus, this study investigated the impact of ILs with different chain lengths on the enzymatic properties of Candida antarctica lipase B (CALB). Molecular dynamics simulations were employed to examine the interaction between ILs modified CNTs and CALB, as well as their effects on CALB's structure. The results revealed that ILs with different chain lengths significantly influenced the absorption orientation of CALB. Tunnel analysis identified a key role for Leu278 in regulating the open or closed state of Tunnel 2 during CALB's catalytic cycle. The weak interaction analysis demonstrated that ILs with suitable chain lengths provided spatial freedom and formed strong interactions with CNTs and ILs (vdW and hbond). This led to a conformational flip of Leu278, stabilizing the open state of Tunnel 2 and improving the activity and stability of immobilized CALB. This study provides novel insights into the design of new green modifiers to modulate carrier performance and obtain immobilized enzymes with better performance, and establishes a theoretical basis for the design and selection of modifiers for ILs in future work.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Leucina , Lipase/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química
9.
J Sci Food Agric ; 103(15): 7849-7861, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37467367

RESUMO

BACKGROUND: Pine sterol ester is a type of novel food source nutrient with great advantages in lowering blood cholesterol levels, inhibiting tumors, preventing prostate enlargement, and regulating immunity. Macroporous resins with large specific surface area, stable structures, and various functional groups (epoxy, amino, and octadecyl groups) have been selected for immobilization of Candida rugosa lipase (CRL) to improve its stability and efficiency in the synthesis of pine sterol esters. A solvent-free strategy using oleic acid (substrate) as an esterification reaction medium is an important alternative for avoiding the use of organic solvents. RESULTS: The immobilization conditions of CRL immobilized on several types of commercial macroporous resins were optimized. Fortunately, by adsorption (hydrophobic interaction), a high immobilization efficiency of CRL was obtained using macroporous resins with hydrophobic octadecyl groups with an immobilization efficiency of 86.5%, enzyme loading of 138.5 mg g-1 and enzyme activity of 34.7 U g-1 . The results showed that a 95.1% yield could be obtained with a molar ratio of oleic acid to pine sterol of 5:1, an enzyme amount of 6.0 U g-1 (relative to pine sterol mass) at 50 °C for 48 h. CONCLUSION: The hydrophobic macroporous resin (ECR8806M) with a large specific surface area and abundant functional groups was used to achieve efficient immobilization of CRL. CRL@ECR8806M is an efficient catalyst for the synthesis of phytosterol esters and has the potential for further large-scale applications. Therefore, this simple, green, and low-cost strategy for lipase immobilization provides new possibilities for the high-efficiency production of pine sterol esters and other food source nutrients. © 2023 Society of Chemical Industry.


Assuntos
Enzimas Imobilizadas , Lipase , Lipase/química , Solventes/química , Enzimas Imobilizadas/química , Ácido Oleico , Biocatálise , Candida/metabolismo , Esteróis , Interações Hidrofóbicas e Hidrofílicas , Estabilidade Enzimática , Ésteres
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 292: 122360, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36724682

RESUMO

Chronic and persistent inflammation associated with excessive high mobility group protein 1 (HMGB1) is a risk factor for various diseases. Dietary intake of kaempferol has been proven to be effective in reducing HMGB1 levels and the degree of inflammation, but the structural mechanism remains unclear. In this context, we first investigated the interaction between bioactive kaempferol and HMGB1 using multi-spectroscopic and molecular simulation techniques. The surface plasmon resonance (SPR) data indicated that kaempferol binds directly to HMGB1 with a Kd value of 2.89 × 10-5 M. Binding of kaempferol with HMGB1 led to the intrinsic fluorescence quenching and modest secondary structure change of HMGB1 supported by fluorescence spectrometry and circular dichroism (CD). Using dynamic light scattering (DLS), it was found that kaempferol induced the aggregation of HMGB1 protein complex to form larger particles. On HMGB1-activated RAW264.7 cells, kaempferol co-incubation exhibited a remarkable inhibitory effect on nitric oxide (NO) release with an IC50 value of 5.02 µM, which was lower than that of quercetin. In silico, kaempferol binds to HMGB1 mainly through hydrogen bonds and hydrophobic forces. Collectively, our study showed kaempferol as a potential HMGB1 inhibitor, mainly acting by direct binding to HMGB1 and inducing its conformational changes, which provides clues for the treatment of chronic inflammation by kaempferol.


Assuntos
Proteína HMGB1 , Humanos , Proteína HMGB1/química , Proteína HMGB1/metabolismo , Quempferóis , Dicroísmo Circular , Espectrometria de Fluorescência , Inflamação , Simulação de Acoplamento Molecular , Ligação Proteica
11.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770660

RESUMO

Phytosterol esters have attracted widespread academic and industrial interests due to their advantages in lowering cholesterol, as antioxidants, and in preventing or treating cancer. However, the generation of by-products limits the application of phytosterol esters in food fields. In this study, deep eutectic solvents (DESs), a series of green, nontoxic, low-cost and biodegradable solvents, were adopted as the catalyst for the synthesis of pine sterol esters. The results showed that the acidic DES which was prepared with choline chloride (ChCl) and p-toluene sulfonic acid monohydrate (PTSA) with a molar ratio of 1:3 performed best in the prescreening experiments. To further improve the efficiency of the pine sterol ester, the molar ratio of substrates, the amount of catalyst, the reaction temperature and the reaction time were optimized, and its yield was improved to 94.1%. Moreover, the by-products of the dehydration side reactions of the sterol can be efficiently inhibited. To make this strategy more universal, other fatty acids were also used as the substrate for the synthesis of pine sterol esters, and a yield of above 92.0% was obtained. In addition, the reusability of DES was also investigated in this study, and the efficiency of DES was well maintained within five recycled uses. Finally, DFT calculations suggested that the suitable H-bonds between ChCl and PTSA decreased the nucleophilic capacity and increased the steric hindrance of the latter, and further prevented the attack on ßH and reduced the generation of by-products. This study developed a reliable and eco-friendly strategy for the preparation of high-quality phytosterol esters with low-dosage catalyst usage and high selectivity.

12.
Carbohydr Polym ; 298: 120150, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241311

RESUMO

In this study, several kinds of metal chloride hydrates were added into NADESs (natural deep eutectic solvents) and a series of three constituent-NADESs (3c-NADESs) were successfully developed. The results suggested that the addition of metal chloride hydrates can significantly enhance the solubility of starch, such as, the solubility in MgCl2-CGly-1 is 90.12 ± 3.49 g/100 g, which is 65 times higher than C-Gly (choline chloride-glycerol) (1.38 ± 0.65 g/100 g). The density functional calculation (DFT) suggested that a lower chloride occupancy of 3c-NADESs can provide more chloride ions used for the formation of hydrogen-bonding interaction with starch. Moreover, the molecular dynamic (MD) study demonstrates that Cl- may play a key role as "chisel" during the dissolution of starch, which can efficiently destroy the intra- and intermolecular hydrogen bonds (HO⋯O) of starch, allowed the penetration of other components and prevent the recovery crystal of starch.


Assuntos
Glicerol , Amido , Ânions , Cloretos , Colina/química , Solventes Eutéticos Profundos , Glicerol/química , Hidrogênio , Solventes/química , Amido/química
13.
Crit Rev Food Sci Nutr ; : 1-9, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069291

RESUMO

Objective: Fasting is considered to be a food structure that can improve body health. Several randomized clinical trials (RCTs) have investigated the effects of fasting in patients with metabolic syndrome (MS). In this review, we performed a meta-analysis to assess the effects of fasting on patients with MS. Methods: Following PRISMA guidelines, a systematic literature search was conducted in PubMed, Embase, and Cochrane Central updated to September 2021. The quality evaluation and heterogeneity detection of the included research literature were carried out by Revman and Stata software through a random-effects model. Results: A total of 268 subjects were included. The pooled results revealed that fasting significantly reduced body weight (WMD: -2.48 kg, 95% CI: -3.22, -1.74), BMI (WMD = -2.72 cm; 95%CI: -4.04, -1.40 cm), body fat percent (WMD: -1.57%, 95%CI: -2.47, -0.68), insulin level (WMD: -2.45 mmol/L; 95%CI: -4.40, -0.49 mmol/L) and HOMA-IR (WMD:-0.65 mmol/L; 95%CI: -0.90, -0.41 mmol/L) in patients with MS, whereas had no effect on glucose, blood pressure and lipids profile. Conclusions: Our findings provide insights into the effect of fasting on the anthropometric outcomes, insulin resistance, and gut microbiota in MS.

14.
Int J Biol Macromol ; 217: 255-269, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35835302

RESUMO

As a new generation of green solvents, deep eutectic solvents (DESs) have been considered as a promising alternative to classical organic solvents and ionic liquids (ILs). DESs are normally formed by two or more components via various h-bonds interactions. Up to date, four types of DESs are found, namely, type I DESs (formed by MClx, namely FeCl2, AlCl3, ZnCl2, CuCl2 and AgCl et al., and quaternary ammonium salts); type II DESs (formed by metal chloride hydrates and quaternary ammonium salts); type III DESs (formed by choline chlorides and different kinds of HBDs) and type IV DESs (formed by salts of transition metals and urea). DESs share many advantages, such as low vapor pressure, good substrate solubility and thermal stability, with ILs, and offering a high potential to be the medium of biocatalysis reactions. In this case, this paper reviews the applications of DESs in enzymatic reactions. Lipases are the most widely used enzyme in DESs systems as their versatile applications in various reactions and robustness. Interestingly, DESs can improve the efficiency of these reactions via enhancing the substrates solubility and the activity and stability of enzymes. Therefore, the directed engineering of DESs for special reactions such as degradation of polymers in high temperature or strong acid-base conditions will be one of the future perspectives of the investigation DESs.


Assuntos
Líquidos Iônicos , Solventes Eutéticos Profundos , Líquidos Iônicos/química , Compostos de Amônio Quaternário , Sais , Solventes/química
15.
Food Funct ; 13(1): 270-279, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34888592

RESUMO

Extraction technology can influence the vegetable oil functional quality. Polyphenols in rapeseed oil have been proved to be beneficial for cardiovascular health. In this study, we evaluated the effect of extraction methods on the functional quality of rapeseed oil from the perspective of phenolic compounds. The results showed that hot pressing produces the highest amount of phenolic compounds in rapeseed oil. Its most abundant phenolic compound, sinapine (9.18 µg g-1), showed the highest activity in inhibiting anaerobic choline metabolism with an EC50 value of 1.9 mM, whose downstream products are related to cardiovascular diseases. Molecular docking and molecular dynamics (MD) simulations revealed that sinapine exhibits good binding affinity toward CutC, and CutC-sinapine is a stable complex with fewer conformational fluctuations and similar tightness. Taken together, hot pressing can be considered the best extraction method for rapeseed oil from the perspective of phenolic compounds.


Assuntos
Polifenóis , Óleo de Brassica napus/química , Cromatografia Líquida , Simulação de Acoplamento Molecular , Polifenóis/análise , Polifenóis/química , Polifenóis/isolamento & purificação , Polifenóis/metabolismo , Espectrometria de Massas em Tandem
16.
J Sci Food Agric ; 102(8): 3160-3168, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34786719

RESUMO

BACKGROUND: Deep-frying oil has been found to cause inflammatory bowel disease (IBD). However, the molecular mechanism of the effect of deep-frying palm oil on IBD still remains undetermined. RESULTS: In the present study, bioinformatics and cell biology were used to investigate the functions and signal pathway enrichments of differentially expressed genes. The bioinformatics analysis of three original microarray datasets (GSE73661, GSE75214 and GSE126124) in the NCBI-Gene Expression Omnibus database showed 17 down-regulated genes (logFC < 0) and 2 up-regulated genes (logFC > 0) existed in the enteritis tissue. Meanwhile, pathway enrichment and protein-protein interaction network analysis suggested that IBD is relevant to cytotoxicity, inflammation and apoptosis. Furthermore, Caco-2 cells were treated with the main oxidation products of deep-frying oil-total polar compounds (TPC) and its components (polymerized triglyceride, oxidized triglycerides and triglyceride degradation products) isolated from deep-frying oil. The flow cytometry experiment revealed that TPC and its components could induce apoptosis, especially for oxidized triglyceride. A quantitative polymerase chain reaction analysis demonstrated that TPC and its component could induce Caco-2 cell apoptosis through AQP8/CXCL1/TNIP3/IL-1. CONCLUSION: The present study provides fundamental knowledge for understanding the effects of deep-frying oils on the cytotoxic and inflammatory of Caco-2 cells, in addition to clarifying the molecular function mechanism of deep-frying oil in IBD. © 2021 Society of Chemical Industry.


Assuntos
Temperatura Alta , Doenças Inflamatórias Intestinais , Apoptose , Células CACO-2 , Culinária , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Óleos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Triglicerídeos/química
17.
Food Chem ; 373(Pt B): 131285, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34740049

RESUMO

The digestion behavior of epoxy triglyceride, the main cytotoxic product of deep-frying oil, remains unknown, which may affect its biosafety. In this study, epoxy triglyceride (EGT) and triglyceride (GT) were used to reveal the effect of epoxy group on digestion. Digestibility rate analysis showed that the free fatty acids release rate of EGT was slower. To clarify this phenomenon, binding ability with salt ions in digestive juice and particle size were also been studied. Cluster size analysis indicated that epoxy group increased triglyceride particle size, resulting in smaller contact area between EGT and lipase. Interface behaviors displayed EGT decreased binding ability with salt ions in digestive juice. Spectroscopic analysis showed EGT caused the red shift of lipase peak, indicating that epoxy group changed lipase structure. Molecular dynamics simulation suggested EGT leads to loosen lipase structure. In conclusion, this study highlights that epoxy group could weaken the triglyceride digestion.


Assuntos
Digestão , Simulação de Dinâmica Molecular , Emulsões , Lipase/metabolismo , Triglicerídeos
18.
Food Res Int ; 145: 110399, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34112402

RESUMO

Molecular dynamics (MD) simulation has proved to be a powerful tool in the study of proteins, nucleic acids, lipids, and carbohydrates et al. in fields of health, nutrition, and food science. In particular, MD simulation has been employed in the investigation of various lipid systems such as triglycerides, phospholipid membranes, etc. Due to the continuous updating of computing resources and the development of new MD simulation methods and force field parameters, the simulation's time and size scale of lipids system has increased by several orders of magnitude. However, MD simulation cannot be used for systems invovle chemical reactions. These greatly limit its further application in the field of lipid research. This paper reviews the progress and development of MD simulation, especially for the application of MD simulation in different lipid systems. In this paper, MD simulation and its general workflow was briefly introduced firstly. Subsequently, the application of MD simulation in various lipid systems was reviewed in-depth. Finally, the limitation and future prospects of MD simulation in lipid research were also discussed. This review provided new insights into the investigation of MD simulation, and a novel thought for lipid study. We believe that MD simulation will exhibit more and more great advantages in the investigation of lipids in the future due to the development of novlel methods.


Assuntos
Simulação de Dinâmica Molecular , Ácidos Nucleicos , Carboidratos , Fosfolipídeos , Proteínas
19.
J Agric Food Chem ; 68(4): 989-997, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31909616

RESUMO

In the previous studies, gemini lipoamino acids (GLAA) were always synthesized by complex multistep organic synthesis, which involved a large number of byproducts and organic solvents. To develop a straightforward, efficient, and renewable synthesis strategy for GLAA, in this study, a type of novel green solvents, natural deep eutectic solvents (NADESs), were adopted as the solvents for these reactions. Five commercial enzymes were involved in the enzyme screening section, and Candida antarctica lipase B (CALB) tended to have the best performance in NADESs systems. The optimization procedure was performed using the Taguchi crossed array method and the highest yield of GLAA (59.14 ± 0.51%) was obtained in choline chloride-glycerol (C-Gly). The purification procedure was carried out with ethyl acetate and water, and the isolate yield ranged from 86.31 ± 2.36 to 91.34 ± 2.26%. With 10 times recycling, the yield of GLAA in C-Gly decreased from 59.14 ± 0.51 to 51.31 ± 0.68%. Interestingly, a synergistic effect of CALB and NADESs was found in the enzymatic synthesis of GLAA, which can be attributed to fatty acids being activated by chloride ions via hydrogen-bonding interactions and resulting in an enhancement in its electron-attracting ability.


Assuntos
Aminoácidos/síntese química , Proteínas Fúngicas/química , Lipase/química , Aminoácidos/química , Catálise , Glicerol/química , Ligação de Hidrogênio , Solventes/química
20.
J Agric Food Chem ; 67(45): 12366-12373, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31644284

RESUMO

Recently, green chemistry and green processes have attracted a lot of academic and industrial interests. As one of the most consumed products, starch expressed extreme advantages in fields of food, pharmacology, and sustainable chemistry. However, as a polyhydroxy polymer, the strong hydrogen-bond network made them almost have no solubility in most solvents. In this study, the solubility of starch in a series of novel, green, sustainable, and low-cost solvents, namely, natural deep eutectic solvents (NADESs), was explored. A total of 12 kinds of NADESs with high fluidity at 363 K were selected, and the solubility of gelose starch (G50) in them was measured. Although a relative high solubility of 36.68 ± 0.86 and 21.03 ± 3.27 g/100 g of G50 was obtained in betaine-urea (BU) and malic acid-glucose (MGlu), respectively, in most NADESs, G50 was almost insoluble. The results of X-ray diffraction (XRD) analysis suggested that the crystalline structures of G50 were destroyed, and the results of attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) indicated that hydrogen-bonding interactions were formed between G50 and NADESs. To further study it, a molecular dynamic (MD) study was applied and found that the hydrogen bonding between betaine and G50 plays a key role in the solubility of G50. To study the hydrogen bonds between NADESs, the geometries of NADESs, with the highest (BU) and lowest solubility (CU) of G50, were optimized by quantum chemical calculations, and the results showed that chloride ions of CU were occupied by urea, while the carboxylic ion of BU was free from it, which made a greatly different capacity to form a hydrogen-bonding interaction with G50 and, thus, a greatly different solubility of G50.


Assuntos
Amido/química , Ligação de Hidrogênio , Solubilidade , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...